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Abstract

In a space telerobotic service scenario, cooperative motion and force control of multiple robot arms are

of fundamental importance. In this paper, we propose three paradigms to study this problem. They are

distinguished by the set of variables used for control design; the three possibilities are: joint torques, arm tip

force vectors and the acceleration of a set of generalized coordinates. Control issues related to each case are

discussed. The latter two choices require complete model information, which presents practical modeling,

computational and robustness problems. We therefore focus on the joint torque control case to develop

relatively model-independent motion and internal force control laws. The rigid body assumption allows the

motion and force control problems to be independently addressed. By using an energy motivated Lyapunov

function, we show that a simple proportional derivative plus gravity compensation type of motion control

law is always stabilizing. The asymptotic convergence of the tracking error to zero requires the use of a

generalized coordinate with the contact constraints taken into acco_mt. If a non-generalized coordinate is

used, only convergence to a steady state manifold can be concluded. For the force control, both feedforward

and feedback schemes are analyzed. The feedback control, if prop_r care has been taken, exhibits better

robustness and transient performance.

1. Introduction

Spacecraft servicing by using autonomous telerobots has been under serious consideration for future deploy-

ment, such as the flight telerobotic servicer concept currently under study in NASA. In a typical telerobotic

service scenario, a number of challenging control problems arise, including the control of open kinematic

chains (arms moving into ready positions for servicing) and closed kinematic chains (arms handling a satel-

lite, manipulating parts etc.), and attitude control (attitude of the platform that supports the arms, and

attitude of the satellite). In this paper, we will address the issues related to the cooperative control of

multiple rigid robot arms holding a commonly held object that is possibly in contact with a rigid surface.

A multiple-arm system can be viewed in different ways depending on the variables regarded as the control

input in the controller design. Three levels of control paradigms can be constructed. On the first level,

the joint torques are viewed as the control input. We call this perspective the full dynamics approach.

On the second level, the tip forces are regarded as the control input and the joint torques are selected in

a feedforward manner (which still requires real time joint angle m_asurements but has no error correction

function) to realize the prescribed tip forces. We call this perspective the arms-as-actuator approach. On the

third level, an unconstrained generalized acceleration (there are an infinite number of generalized coordinate

representations for the constrained dynamics) is set equal to a pseudo-control input and the joint torques

again generate the prescribed control action via a feedforward compensation. We call this perspective the

feedback linearization approach.

By the nature of their structures, the last two approaches require the full dynamical model information

to implement the feedforward compensation. However, the control law design is much simplified as the

nonlinear dynamics of the arms are compensated. Since computational and robustness issues related to the

multiple-arm control problem remain to be fully explored, we will focus on the full dynamics approach in

this paper.

Due to the rigidity assumption on the held object, the grasp and the arms themselves, it is possible to

decompose the tip contact force (of all arms collectively) into two orthogonal components, one that effects
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motion of the held object and the other that produces a desired internal squeeze force. As a consequence,

the motion and force control problems become decoupled (in one direction) in the following sense:

Force control does not affect object motion; object motion does affect the internal force (due to the inertial,
d'Alembert force).

This motivates the following control design philosophy:

Design a stable motion control law without the consideration of force control. Then design a stable force
control law by treating the inertial force as a perturbation.

Based on this philosophy, motion control laws for set point operation, with and without transient shaping,

are developed by using a class of Lyapunov functions motivated by the total energy of the system. This

class of control laws has an appealing simple structure of proportional and derivative feedback with gravity

compensation. In the set point control of the internal force, both feedforward or feedback (if force/torque

sensor information is available) strategies are analyzed. The feedback scheme has better robustness properties

than the feedforward one, and, because of the motion/force decoupling property mentioned before, it can
achieve tight transient control with high feedback gains.

For motion control, several choices of feedback variables are possible, with different implications in terms

of performance, stability, relation to the control objective, amount of model information needed in imple-

mentation, etc. Here, we consider the joint variable, the tip variable and an unconstrained generalized

coordinate. In all three cases, the proportional-derivative-gravity control law drives the system to a steady

state configuration. However, only in the case of generalized coordinate does the steady state configuration

correspond to the desired one. In the first two cases, the configuration lies in a manifold on which the tip

forces produced by the arm position errors balance with one another. We call this manifold the jam manifold.
Some preliminary results of its properties are discussed.

2. Model for Multiple-Arm Systems

All of the stability results discussed in this paper are based on the assumption that the arms and the held

object are rigid and the grasp between the arms and the object is also rigid. Other models of multiple-

arm systems sometimes insert a spring in the last link of each arm to simulate the effect of force/torque

sensors. We feel that because the internal spring in the force/torque sensor is sufficiently rigid (implying

small displacement) and the anticipated force transient is sufficiently benign (due to our force controller),

our infinite rigidity assumption is a reasonable approximation. With the additional assumption that the

object does not deform, we can decompose the tip force vector into two orthogonal components: one that

contributes to motion of the system and one that builds up internal force. The component that effects

motion is said to be in the "move" subspace and the component that builds up internal force is said to

be in the "squeeze" subspace. This decomposition is appealing for several reasons. It agrees with human

experience that squeeze forces can be applied without effecting any apparent motion. The analysis is simpler

since it is free from the added complication of a spring in every arm, the effect of which does not appear to

be very significant physically (if the spring is due to the force/torque sensor only and the internal force is

controlled). There is also the possible application to task separation in combined autonomous/teleoperated

types of operation (e.g. autonomous positioning and teleoperator force control). An important consequence

of the rigidity assumption is that the motion and force control problems can be decoupled. The squeeze

force control does not affect the motion of the held object, but the motion can affect the squeeze force. This

motivates the following approach to control design: Design motion control first independent of the force

control, then design force control by treating motion induced squeeze force (projection of the d'Alembert

force in the squeeze subspace) as an external perturbation (which is unaffected by the squeeze control effort).

The rigidity assumption also prevents direct proportional force feedback, for the algebraic loop results in

an ill-posed dynamical system, destabilized by arbitrarily small delay in the force feedback channel; a filter

with memory must be used instead. This issue will be addressed later in the section on force control.
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Withtheassumptionsstatedabove,theequationofmotionare[1]:

M_:r-Cq-k- jTf

L = Arf

Mea, = fc + b, + k¢

a = Aa, +a = J(l+ Jq

v =Av¢ = J?l

(2.1a)

(2.1b)

(2.1¢)

(2.1d)

The symbols are defined as follows (an arm-related vector is composed of stacked single-arm vectors; an

arm-related matrix is composed of block diagonalized single-arm matrices): q = joint variable, M = inertia

matrix, C = arm coriolis and centrifugal force, k = arm gravity load, r = joint torque, f = tip force, J =

arm Jacobian, A = object center of mass (CM) to arm tip Jacobiam f_ = force at object CM, bc = object

coriolis and centrifugM force, kc = object gravity load, a = tip acceleration, a¢ = object CM acceleration,

v = tip velocity, ve = object CM velocity, a = bias arm tip acceleration.

These equations can be combined to solve for the contact force, f, as

f = (AM[1A r + jM-1jr)-l(jq- a- AM[l(bc + kc) + gM-l(r- Cq- k)) (2.2)

f is uniquely solvable if and only if [J A] has full rank. It was shown in [Cor.3.3 in 2] that if the manipulator

system is kinematically parameterized by the Denavit-Hartenberg parameters and base positions of the arms,

then [J A] having full rank at every kinematically feasible configuration is a generic property. Hence, we

will assume that f is uniquely solvable. For the ease of presentation, we restrict our attention to the non-

redundant arms case, though the redundant arms case can also be considered in the same framework.

The matrix A T in (2.1b), which transforms the tip force to the force at object CM, is 'fiat", and therefore

possesses a nontrivial null space. Since f_ = AT f, f in this null space means that it does not contribute to the
motion of the held object but only to the buildup of internal forces. Hence, we define the squeeze subspace

to be X, = Ker(A T) (the kernel or the null space of AT). The orthogonal complement of X, is defined as
±

the move subspace, which is Xrn = Im(A) (the image or the range space of A) since Rmn = Xm_X,. For a

given tip force, f, there exists a unique orthogonal decomposition

f = f_-t-f,

where frn E Xm and fj E Xj. Only fm contributes to the motion of the held object. A T can be written as

A T = [A_,... ,ATm]

where A T transforms the tip force of arm i to the force at the object, CM, and it is given by

where tic is the vector from the tip of arm i to the object CM and - denotes cross product in a coordinate

representation. Clearly, A T is non-singular, and, hence, A T is of full row rank. This implies that dim(Xj) =

(m - 1). n and dim(X,_) = n.

In (2.1 b-d), the tip forces of the arms can be regarded as actuator outputs. This leads to the arms-as-

actuator approach. Eq. (2.2) can then be considered as a nonlinear compensator which computes the joint

torques needed for the desired actuation signal. This viewpoint has also been adopted in [3].

For a selected set of unconstrained generalized coordinates, the multiple-arm dynamical equation can be

partitioned in a different way so that the generalized acceleration i_ equal to a desired value. A nonlinear

333



feedforwardfilter thencomputesthejoint torquesrequiredforthedesiredbehavior.Denotethegeneralized
coordinateandits kinematicrelationto thejointanglesby

j3= h(q) (2.3)

Then by differentiating twice with respect to t and denoting J_(q)_Uqh(q), we have

= u (2.4a)

u= Jzq + JpM-I(r - Cq- k- Jw f) , (2.4b)

where f is given by r, q and q as in (2.2) . We call the perspective of regarding u as the effective control

input the feedback linearization approach. Note that (2.4) is valid irrespective of the redundancy of the
arias.

3. Control Issues Related to the Feedback Linearization and the Arms-As-Actuator Ap-
proaches

In the arms-as-actuator paradigm, the dynamics involving the held object seen at the center of mass are

composed of two parts: a force balance equation (Newton's equation) and a torque balance equation ( Euler's

equation). The force equation is linear and can be controlled easily. The torque equation involves control

on the rotation group, SO(3). Various possible control laws for the latter problem have been analyzed in
[4,wkattcdc]. In particular, a control law involving the feedback of the unit quaternion of the attitude error

can be used for globally asymptotically stable closed loop operation.

In the feedback linearization paradigm, the control law can be easily constructed since the feedback lin-

earized system is in double integrator form. However, J_ in the control law introduces additional singularities
which are a mathematical constraint rather than a physical limitation.

The non-uniqueness of f, and therefore r, for controlling the object motion can be used to control the

closed chain internal forces. This can be posed as an optimization problem, giving rise to the load-balancing
problem as discussed in [6].

Full dynamical model information is needed in the nonlinear feedforward compensation for both the

feedback linearization and arms-as-actuator schemes. The computational and robustness issues due to the

complex nonlinear, model dependent compensation need to be addressed for a successful implementation.

At the present, work in this direction is lacking in the context of multiple-arm systems. For this reason, the

rest of the paper will focus on the full dynamics approach and develop relatively model-independent control
laws directly for the joint torques.

4. Control Issues Related to the Full Dynamics Approach

In this section, the full dynamical model is analyzed to develop motion and force control strategies. A

consequence of the move/squeeze decomposition is that any term in r of the form JTFs, with Fs in the

squeeze subspace, does not affect motion of the system. However, the motion of the system does affect the

actual squeeze force, due to the squeeze component of the d'Alembert (inertial) forces. This motivates the

following decomposition of the control torque:

r=r,,_+r,+r 9 , (4.1)

where rm is responsible for the motion control, r, is responsible for the squeeze force control and re com-

pensates for the gravity load due to the arms and the held object. In Section 4.1, various possible motion

feedback control laws, based on the variables used for feedback, are discussed. In Section 4.2, different force
control laws are discussed.

For motion control, we propose a class of relatively model independent control laws that have a simple

Proportional Derivative (PD) plus gravity compensation type of structure. For the internal force control,
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asymptotically stable, model independent, set point controllers based on feedforward or feedback imple-

mentation are constructed. The feedback controller is shown to possess superior robustness property and

transient performance.

4.1 Motion Control

It has been shown [7] that PD feedback plus gravity compensation is a globally asymptotically stable

set point control law for a single arm with an unconstrained tip. The feedback variable can be either the

joint variable (angle or displacement) or the tip variable (tip position and orientation, the latter being

suitably parameterized). For tip variable feedback, Jacobian non-singularity for all time is assumed. The

structure of this class of control law is very appealing since it is relatively model independent (only arm

gravity compensation is needed) and has an energy dissipation interpretation. Therefore, it is reasonable to

investigate its generalization to the multiple-arm case.

For a multiple-arm system, there are three possible types of feedback variables: 1. joint position (of all

arms), 2. tip position (of all arms), 3. a generalized coordinate. The first two over-specify the configuration

of the system (due to the kinematic constraint imposed by the rigid grasp of a common object) and hence

are not generalized coordinates. The ramification of using them for feedback will be discussed later. Possible

choices for generalized coordinates include position and orientation of the mass center of the held object,

a subset of the tip position, joint position and/or tip forces. For tip position feedback and generalized

coordinate feedback involving orientation, a parameterization of orientation needs to be chosen. We will

assume that a minimal representation is used, though other related works [4,5] have indicated that the unit

quaternion (Euler parameters) may be a better choice since there is no problem with the singularity of

representation.

We will address point-to-point control only. Generalization to the general tracking problem is currently

under investigation. If the transient performance is not expressly considered, then, as shown in [8,9], a

straightforward generalization of the single arm energy Lyapunov function approach shows that a steady
state is reached when PD plus gravity type of control law is used for all three types of feedback variables.

In the cases of joint level and tip level feedback, the steady state error converges to a manifold, even if the

set point represents a kinematically feasible configuration. Only in the generalized coordinate feedback case

is the steady state error zero.

The fixed-set-point control laws in [8,9] are useful in demonstrating the application of a general class of

Lyapunov functions and pointing out some interesting issues unique to the multiple-arm control problem

(jam manifold, squeeze force control, etc.). However, the fixed set point control paradigm is fundamentally
flawed because the closed loop trajectory transient is not controlled. For initial condition far away from the

desired set point, the transient is typically so wild, these control laws are virtually unusable. The problem

is most severe in tip and generalized coordinate feedback, where arms may cross Jacobian singularities,

flip poses (due to multiple solutions to the inverse kinematics problem), collide with themselves, violate

joint stops, etc. This motivated us to extend our framework to include trajectory shaping in the set point

operation.

A possible method to shape transient performance is to replace the position error and the velocity in the

fixed-set-point control laws by the difference between the actual trajectory and a desired trajectory to the

goal set point which is chosen to have good transient behavior. Since the desired trajectory converges to

a set point, we shall call it the moving set point. Intuitively, we expect better transient response with the

moving set point controller since the applied torque increases gradually rather than abruptly. In this section,

we will show that provided the desired velocity and acceleration satisfy some mild conditions, the moving

set point controller results in the same closed loop stability property as in the fixed set point case.
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Assumethedesiredtrajectoryhasthefollowingproperties:

(qdes(t)'--*constant,,tde,(t)---*O, qdes(t)---*O,

• qae_ E L2, q'ae_ E L2 N Lc_, both _/ae_, q des are continuous .}

These are mild restrictions on the desired trajectories. If the desired trajectory possesses these properties,

then we say the desired trajectory belongs to the class ,S. We modify the Lyapunov function used for

fixed-set-point control by replacing velocities by velocity tracking errors:

V = 7Ave M¢Avc + A(ITMA(1 + U* (4.2)

where

hl)c -- 1)c -- ?)c_e,,

and U* is given below

ve,,, ----A+vdes, ?)det --- J(q)(ldes,

Type of Feedback

hq = q - qdo0

U'(q)

Joint Level

Tip Level

Generalized Coordinate

1AqT KpAq

½AxTKpAx

½a#r Kpa#

Table 1. Quadratic Potential Energy Candidates

The generalized velocity, _ is related to the tip velocity via v = BE. The superscript + denotes Moore-

Penrose generalized inverse. Suppose the following proportional-derivative-gravity control law is used for
the motion control (cf. (4.1)):

rm + rg = -rp - r_ + k(q) - JT F¢ , (4.3)

where k is the arm gravity load, and F_ is gravity compensation for the held object, chosen to satisfy

ATFc = kc. The proportional and velocity feedback terms are given in the table below, depending on the
variables used for feedback:

Tvt)e of Feedback _ W

Joint Level KpAq(t)

Tip Level JTKpAx(t)

Generalized JT Fp

Coordinate Br FD = KpAfl(t)

BT FD = KpA_(t)

K_Aq(t)

SrK_Av(t) + DAq(t) D > 0

JTFD +DA¢(t) D > 0

Table. 2 PD Feedback in Moving Set Point Motion Control Laws

Then the derivative of V along the solution can be bounded by

? = -._ IlAqll2 + ,1,(t)II_,qll 2 + ,72(t)IIAqll (4.4)

where t/l(t)---,0 as t---,_ and 02 E L2[0,¢¢) due to the assumed properties of the desired trajectory. By
integrating both sides from to to t, for to sufficiently large, there exists A1 > 0 such that

r-

A1 • 2 /[ImqliL_(tto,t]) <_V(to)- V(t) -4- q2(r)Ilmq(T)ll dr

<_V(to)+ 11'_211L_(tt..,])IIA@L,(t,°,tD (4.5)



Now,bycompletingthe squares involving IIAqlIL_(lto,tl), it follows that Aq E L2([to, oo)). From (4.5), V(t)

is uniformly bounded for all t, which implies Aq, Aq, Aq and A q are uniformly bounded. By Barbalat's

Lemma [10], Aq_0 as t--,¢¢, which, by Lemma 1 of [11], implies Aq--0, also. Now, from the arm dynamical

equation, rp + JTFc + JTf--*O which yields the same convergence result as in the fixed set point case.

The stability properties of the moving set point controllers can now be summarized below:

Result 4.1. If the desired trajectory belongs to class S, then the multiple-arm system with control

laws (4.3) and Table 2 has the following stability property:

Type of Feedback Type of Stability

Joint Level

Tip Level

Generalized Coordinate

q--_0, Aq converges to the manifold

KpAq + Jr(F_ + f) = 0 (4.6)
v--_0, Ax converges to the manifold

JT(KpAx + Fc + f) = 0 (4.7)

8, _ 40 (global asy_nptotic stability).

Table. 3 Stability Properties of Fixed Set Point Motion Controllers

Furthermore, if the initial tracking error is zero, the maximum trajectory tracking error is inversely propor-

tional to the size of the PD gains.

If the desired trajectory starts with the same initial condition as the actual trajectory and has the desired

transient behavior, e.g., small overshoot, no excessive acceleration or jerk, avoiding Jacobian singularities,

joint stops, obstacles and the arms themselves, Result 4.1 shows that high enough feedback gains ensure

that the actual trajectory will have similar properties, also. The maximum tracking error can be shown

proportional to the L2-norm of _ in V which is composed of the difference between the moving set point

and its steady state, the desired velocity and acceleration. A trajectory planning problem can he posed to

find a desired trajectory that satisfies the required transient response and minimizes the L_-norm of 3.

Control laws that incorporate the full model information can also be constructed within this approach (by

using, for example, results in [12]). We can qualitatively state the advantage of this added complexity in the

control algorithm. In the tracking control problem, even if the initial tracking error is zero, the PD control

law will always incur a nonzero trajectory tracking error. This error can be made small if gains are allowed

to he large; however, it may not always be practical, given the limited actuator size and the noise problem.

With the model-dependent control laws, the tracking error will remain zero (at least theoretically; noise will

cause small deviation from the desired trajectory). The same is true in the internal force control (see next

section). If the full model information is assumed, precise force control at every moment in time is possible;

while the model-independent control law reduces finite force error with high gains. The type of control law

to use for a given application depends on the trade-off between the available a priori model information and

the performance requirement, subject to actuator and sampling con:straints.

4.2 Force Control

In this section, we consider the problem of choosing rs in (4.1) t,, asymptotically drive the squeeze force

to a desired set point. To ensure that arm motion is not affected by the squeeze force control, we choose

_, = J_F. (4.8)

where Fs is restricted to lie in the squeeze subspace. The effective control variable for force control is now

F,.
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Withoutusingthefull modelinformation, the squeeze force can only be controlled asymptotically. (If

model information is available, an additional optimal load distribution problem can be posed; see [6].) We

will show that either feedforward or feedback control structure may be used to drive the squeeze force to

its set point asymptotically, depending on whether force sensors are available. For the full composite force

vector, m force sensors need to be used. The feedback strategy, if properly applied, has better performance

and robustness. If the gravity load in the squeeze subspace is not fully compensated, feedback control can

still be used but the feedforward control will incur a squeeze force error equal to the squeeze component of
the gravity error.

By projecting the composite tip force vector, given by (2.2), in the squeeze subspace, and applying (4.8) ,
we have

fs= F, + q (4.9)

where q representsthe projectionof the inertialforcein the squeeze subspace. Recall that an important

property of rI due to the move/squeeze decomposition isthat itisnot affectedby F_. Hence, itcan be

treatedas an externaldisturbance.We assume that one of the PD type ofcontrolstrategiesin Section4.1

has been used for motion control.(In fact,any stablemotion controllaw can be used without affectingthe

subsequent argument.) Then q(t)--+0as l--_cx_.We are interestedin studying the followingaspectsof the
forcecontrolproblem:

1. Stability. (Does f,(t)---_fs_,, as t---+cx_in (4.9) ?)

2. Transient performance. (What is the maximum force error, i.e., maxt_>0 f,(t) - f,,,?)

3. Convergence rate. (How fast does f_--_fs,,,?)

4. Noise reduction. (If 'l(t)--*qoo _ O, representing a persistent noise, what is the steady state force error?)

To attain asymptotic stability, a feedforward control will clearly suffice

F, = f_d., (4.10)

However, the transient performance and convergence rate are determined entirely by r/ (which are in turn

determined by the quality of the motion control law). There is also no noise reduction in this scheme.

If the arm tip forces are measured, then clearly a feedback strategy is preferable, due to the hope for added

insensitivity to noise and improved transient performance. However, the infinite rigidity assumption stated

in section 2.1 necessitates extra care in the control design. We will show that the lack of dynamics in (4.9)

means that infinite bandwidth feedback from f, to F, would violate the strict causality of the loop. This
has some unintended consequences. For example, the control law

F, =Ld,. +_(L - L,o.) (4.11)

implies f,--_fs4., for f_ _: 1. Furthermore, transient performance, convergence rate and steady state error

due to noise can all be much improved over the feedforward case, if _ is large. However, an arbitrarily small

time delay in the feedback channel (which is always present in a physical implementation) leads to instability
if I_l > 1. If Ifl[ < 1, then the response of the resulting linear discrete time system consists of two terrrrs:

the homogeneous solution and the particular solution due to q. For fast convergence of the homogeneous

solution to zero, _/ needs to be close to zero, but then the response is similar to that of the feedforward

control and the desirable properties due to the force feedback is lost.

Recognizing that the problem is caused by the algebraic loop due to the proportional force feedback,

we suggest pre-processing the measured force by a strictly causal filter (if the filter is linear, then strictly
proper). The feedback control law then takes on the following form:

F, = L,,. +c(L - L,.) (4.12)
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whereCisa strictly proper linear filter such that (I - C) has zeros only in the open left half plane. Clearly,

fs(t)---,fs_., as t--,oo. To see the transient behavior, we write

Afo == f,-f,,.. =z:,o (4.x3)

where * denotes the convolution operator and £: the convolution kernel associated with (I - C) -1. Since

t: can contain arbitrarily fast dynamics (if the desired dynamics of £ is _-_ in the Laplace domain, then

C(s) = _ is the Laplace transform of the corresponding filter C), the L1 norm of/_ can be made
arbitrarily small. By the following error estimate [Appendix C,13],

IIz f,IIL = IIz:IIL,IlrlllL 

it follows that the transient performance and convergence rate can both be improved. To see the effect of a

persistent noise, we apply the initial value theorem:

lim sAfo(s) = lim Af,(t) (4.14)
$---* 0 1---* oO

We conclude that if C(s) has a pole at the origin, then there is no steady state error even if ,7 does not

converge to zero. Hence, all the control objectives are satisfied with the control law (4.12) , provided that

(I - C) -1 is a stable filter and C has a pole at the origin. If the spectrum of r/is known (say, for repeated

tasks), C can be chosen to selectively notch out the dominant dynamics in ,1. What about robustness with

respect to small time delays? To address this problem, we use a first order approximation of f,(t - At), for

At small, i.e.,
f,(t - At) _ f,(t) -- AtL(t)

The closed loop system in the Laplace domain now becomes

Aft(s) = (I- C(s) - AtC(s)s)-irl(s) (4.15)

Since C(s) is strictly proper and (I- C) -1 is stable, for sufficiently small At, the perturbed system (4.15)
remains stable. In the case of direct proportional feedback, C is not strictly proper and indeed the corre-

sponding closed loop system becomes unstable for arbitrarily small At.

A particularly simple choice of C is just an integrator, i.e., in the Laplace domain,

C=_ __ (4.16)
$

This control law has all the desirable features discussed above. If the integral feedback gain j3 is chosen

sufficiently large, and //(t) is uniformly bounded in t, then by explicitly solving the closed loop dynamical

equation, it can be shown that the transient effect of r/on f_ - fs_,, can be made arbitrarily small.

The discussion in this section can be summarized in the result below:

Result 4.2. For the multiple-arm control system under consideration, if the arm configuration

converges to a steady state (i.e., velocity converges to zero), then either the feedforward controller (4.11)

or the feedback controller (4.12) , with C a strictly proper linear filter and (I - C) containing zeros only in

the open left half plane, drives f_---,f,_,..

If in (4.12) , C has a pole at the origin, then replacing ra in (4.1) by its projection in the move subspace

does not affect the asymptotic convergence of fs -fJ_,, to zero, and, in general, fa---*fs_,, even if r/---*7/oo¢ 0.

If C is chosen to be an integrator as in (4.16) and y in (4.15) has a uniformly bounded time then

f,(t) - f0_,, tends to zero uniformly for t in bounded intervals as fl---.oo.
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5. Conclusion

This paper has considered several possible control structures for multiple-arm systems by regarding either

joint torques, tip force, or a generalized acceleration as the control input. We have mainly focused on the first

case since a class of relatively model-independent control laws can be generated for both motion and internal

force control. The recently developed move/squeeze orthogonal subspace decomposition coupled with the

energy Lyapunov function formulation provides the basic analytical framework. Future research includes the

tuning of PD gains to improve tracking performance and generalizations to the multiple degrees--of-freedom
contact case.
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